

DE MYSTERIIS DOM JOBSIVS
Mac EFI Rootkits

Black Hat USA 2012

Loukas K (snare)
<loukask@assurance.com.au>

assurance

Table of Contents
Introduction ..3
Background ..3

What is EFI?... 3
EFI architecture & boot process.. 4
Developing for EFI .. 5

Attacks using EFI ...6
Attacking FileVault.. 6
Patching the kernel... 7

Persistence & loading drivers ..10
Boot device.. 10
PCI expansion ROMs .. 11

Expansion ROMs on external devices .. 12
EFI firmware flash ... 14

Exploring firmware volumes .. 15
Writing to firmware flash.. 15

Defense ...17
Firmware password .. 17
Secure Boot ... 17

Conclusion..17
References..18
About the author ..19

Introduction
Attacks against PC firmware have been a threat since the early days of
malware, beginning with the venerable MBR virus and quickly moving on to
more advanced attacks. In 1998 we saw the CIH/Chernobyl malware infect
many systems around the world, rendering some systems completely
unbootable by corrupting the system's BIOS. In more recent times we have
seen proof-of-concept rootkits (such as IceLord and Rakshasa[1]), and
malware in the wild (such as Mebromi) that are able to overwrite the BIOS
with a malicious version that enables the malware to persist in the system and
interfere with the boot process. This type of malware can persist solely in the
BIOS EEPROM on the motherboard, without requiring the storage of any files
on the system’s internal hard disk. This means that the malware can persist
across operating system reinstalls, disk formats, and even the replacement of
the hard disk.
With the advent of the Extensible Firmware Interface (EFI), malware
developers are given new opportunities to infect a wide range of new
systems. A detailed specification, common reference implementation upon
which most vendor implementations are based, and a full-featured
development kit enable both legitimate firmware developers and malware
developers alike to build cross-platform code with much greater ease than
developing for the legacy BIOS.
Apple was one of the earliest adopters of the EFI firmware when they utilised
it in their range of Intel-based Macs beginning in 2006. Apple's EFI
implementation includes support for a number of common hardware
components used in Mac systems, and Mac-specific features like the HFS+
filesystem, but is still based on the same specification and reference
implementation as other vendors. More recently, EFI has been implemented
by a number of PC motherboard vendors to replace the legacy PC BIOS,
further highlighting the possibility for attacks against EFI.
This paper discusses the current state of EFI-based malware, and how it may
be implemented in order to attack Apple Mac systems. In the presentation
accompanying this paper, proof-of-concept attacks will be demonstrated that
utilise a number of the techniques discussed herein.

Background
What is EFI?
In 1998, Intel began a project initially known as the Intel Boot Initiative to
develop a specification for a replacement for the PC BIOS, in an attempt to
address some of its limitations. This project was eventually renamed EFI
(Extensible Firmware Interface) and was developed by Intel until 2005 (EFI
version 1.10), at which point it was handed over to a community group, the
Unified EFI Consortium, and renamed UEFI (Unified Extensible Firmware

Interface). Alongside the development of the specification, Intel developed a
reference implementation called the Intel Platform Innovation Framework,
codenamed "Tiano", and also known as “the Framework”. Tiano is the
"preferred" implementation according to Intel, and it is the basis on which
most IBVs (independent BIOS vendors) build their own implementation of the
specification.
When Apple began manufacturing hardware using the Intel x86 CPU
architecture in 2006, they also adopted EFI in favour of OpenFirmware, which
they were previously using on their PowerPC-based hardware. Apple's EFI
implementations are based on version 1.10 of the EFI specification, and
presumably the same version of Intel's reference implementation.

EFI architecture & boot process
An EFI environment comprises a number of components – EFI core modules
(SEC, PEI, DXE and BDS), drivers, applications and bootloaders. Generally,
an EFI firmware image contains the core modules and a set of drivers for
supporting at least the core hardware on the motherboard. It may also contain
other common drivers, or applications such as the EDK Shell, a command
shell for interacting with the EFI pre-boot environment. Apple's EFI
implementations differ, as expected, from machine to machine depending on
the hardware used in each type of system.
When an EFI system is powered on, the SEC (Security) phase of EFI is the
first code that is executed within EFI. This phase serves as a root of trust for
the system and handles platform reset events, among other things. The SEC
phase hands off to the PEI (Pre-EFI Initialisation) phase, which is responsible
for initialising the CPU and main memory, before handing execution off to the
DXE phase.
The DXE (Driver eXecution Environment) phase is where the majority of the
system initialisation takes place. First, the DXE core produces a set of Boot
and Runtime Services. Boot Services provide drivers, applications and
bootloaders that run within the EFI environment with a number of services
such as allocating memory and loading executable images. Runtime Services
provide services such as converting memory addresses from physical to
virtual during the handover to the kernel, and resetting the CPU, to code
running within the EFI environment or within the OS kernel once it has taken
control of the system. Once these services have been established, the DXE
dispatcher discovers and executes drivers from the firmware volume,
expansion ROMs on devices connected to the PCIe bus, and connected
disks.
When drivers are initialised they register “protocols”, which are blocks of
pointers to functions and data structures that serve as the interface to the
driver. The UEFI specification defines a number of core protocols that provide
some of the main services like console input and output (Simple Text Input
Protocol, Simple Text Output Protocol and Graphics Output Protocol), media
access (Simple File System Protocol, EFI File Protocol, Disk I/O Protocol,
etc), PCI bus support (PCI Root Bridge I/O Protocol, PCI I/O Protocol, etc),

USB support (USB2 Host Controller Protocol and USB I/O Protocol), a series
of network-related protocols, and many more. See the UEFI Specification[2]
for a complete list of these protocols and the detail of their implementation.
Drivers can register for a number of notifications of events that occur within
the EFI pre-boot environment. For example, a driver can request that it be
notified whenever new protocols are installed on device handles, or it can
request to be notified when the ExitBootServices() function is called to
prepare the environment for the execution of the kernel.
Once the DXE phase has loaded and executed all the necessary drivers, it
hands off execution to the BDS (Boot Device Selection) phase. This phase is
responsible for discovering the possible boot devices, selecting one to boot
from, loading the bootloader and executing it. On a Mac, when a boot device
is selected as the default to boot from, the device path is stored in the
system’s NVRAM. When the BDS phase is executed, it locates the disk using
this NVRAM data, locates the bootloader using the HFS+ volume header, and
executes it.
The bootloader is responsible for loading the kernel and executing it. Prior to
executing the kernel, the bootloader calls the ExitBootServices() function
from the Boot Services table, which informs EFI that it should prepare the
environment for the kernel to take over control of the system. During this
preparation, drivers who have registered for the ExitBootServices() event
are notified so that they can free unnecessary memory and perform any other
clean up tasks prior to the kernel’s execution.

The EFI boot process.

Developing for EFI
The open source part of Tiano is the EFI Development Kit (EDK), which
contains the framework’s foundation code and some sample drivers. The
current version of the EDK is EDK2 and is available for download from

SourceForge[3]. EDK2 can be used in conjunction with a standard
development toolchain to build drivers, applications and bootloaders for
execution within an EFI environment. The majority of the EDK2 is written in C,
with some assembly language components for various platforms, and some
additional tools written in Python, Bash and other languages.
EFI components are developed in C, whereas modifications for the legacy PC
BIOS generally need to be written in assembly language. A number of
platforms can be targeted from this code, often without resorting to a great
deal of low-level, platform-specific implementation (obviously this depends on
the particular application). This process is further assisted by the EFI Byte
Code format (EBC), which can be run on any EFI implementation. This is
helpful to malware developers as they can easily deploy universal malware to
target various different platforms.
EFI uses a modified subset of the PE32+ format for its executable images,
which is a common executable format used by Microsoft Windows that many
tools can generate and parse. This is also helpful for reverse engineering
efforts, as common tools used for reverse engineering can understand and
parse this format. IDA Pro, an advanced tool for disassembling binary images,
can parse PE32+ and disassemble the EBC format.

Attacks using EFI
EFI's flexibility is a boon to driver and malware developers alike, as it makes
building modular code that can be loaded and executed on a wide variety of
EFI implementations much simpler than targeting the traditional PC BIOS. The
simplest way to deploy malicious code for execution within the EFI
environment is to build an EFI DXE driver that attacks the system, rather than
supporting hardware. Once it is loaded into the system, such a driver can
interfere with the boot process by hooking various protocols in the pre-boot
environment, or by gaining execution within the context of the bootloader and
patching the kernel prior to its execution.

Attacking FileVault
Deploying Apple’s full-disk encryption implementation, FileVault, slightly
changes the boot process. On a non-FileVault system, the bootloader
(boot.efi) is stored on the main OS partition in /System/Library/CoreServices.
On a FileVault-encrypted system, the main OS partition is encrypted and
cannot be accessed by the early stages of EFI in order to load the bootloader.
As such, when FileVault is enabled the bootloader is relocated to the
“recovery” partition, which is a partition at the end of the partition table
otherwise used to boot the system into recovery mode for troubleshooting or
reinstallation. When the system is booted, the bootloader is loaded from the
recovery partition and presents the passphrase entry screen. The bootloader
then uses the passphrase to “unlock” the CoreStorage volume on the primary
OS partition and continue the boot process. An in-depth analysis of FileVault
and the CoreStorage format has recently been undertaken by researchers[4].

It is recommended that this be referred to for more information on the internals
of FileVault.
One way in which FileVault can be attacked from an EFI driver is by
employing a traditional key-logging technique in order to capture the
passphrase as it is entered by the user. Keystrokes are processed in the EFI
pre-boot environment by the Simple Text Input protocol, which defines a
function called ReadKeyStroke():
_EFI_SIMPLE_TEXT_INPUT_PROTOCOL {

EFI_INPUT_RESET Reset;
EFI_INPUT_READ_KEY ReadKeyStroke;
EFI_EVENT WaitForKey;

} EFI_SIMPLE_TEXT_INPUT_PROTOCOL;

The relevant instance of this protocol is the one installed on the console
device handle, and referred to by the EFI System Table’s ConIn variable:
typedef struct {

EFI_TABLE_HEADER Hdr;
CHAR16 *FirmwareVendor;
UINT32 FirmwareRevision;
EFI_HANDLE ConsoleInHandle;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
EFI_HANDLE ConsoleOutHandle;
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;
EFI_HANDLE StandardErrorHandle;
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;
EFI_RUNTIME_SERVICES *RuntimeServices;
EFI_BOOT_SERVICES *BootServices;
UINTN NumberOfTableEntries;
EFI_CONFIGURATION_TABLE *ConfigurationTable;

} EFI_SYSTEM_TABLE;

The instance of the Simple Text Input Protocol that is initially installed and
assigned to ConIn is replaced by the bootloader when the passphrase entry
screen is called. As such, we need a way to update this new instance of the
protocol before the passphrase is entered. In order to do so we can register
for notifications when new protocols are installed on device handles, using the
RegisterProtocolNotify() boot service. When the event is triggered and
our driver is notified, we can save a pointer to the ReadKeyStroke() function
in the Simple Text Input protocol instance, and overwrite the pointer with a
pointer to our own function. When our ReadKeyStroke() function is called,
we simply save the key that was pressed into a buffer and call the real
ReadKeyStroke(). When the driver is unloaded, or the ExitBootServices()
function is called and the malicious driver is notified, it can write the key buffer
to a file or transmit it over the network to the waiting attacker.

Patching the kernel
Pre-boot malware typically interferes with the loading of the OS kernel, and
patches it before it is executed, in order to modify the kernel’s behaviour once
it is in control. In order to do this from a malicious EFI driver we need to wait
until the kernel has been loaded, as the kernel is not in memory at the point
that the EFI driver is loaded and initialised. The notification for the

ExitBootServices() function happens to be triggered once the kernel is in
memory, so it is an opportune time at which to patch the kernel image.
Before we can patch the kernel in memory we need to locate it. Inspecting the
kernel Mach-O binary image informs us of its virtual memory location once it
is loaded:
$ otool -l /mach_kernel
/mach_kernel:
Load command 0
 cmd LC_SEGMENT_64
 cmdsize 472
 segname __TEXT
 vmaddr 0xffffff8000200000
 vmsize 0x000000000052e000

We can see that the first segment of the kernel image is loaded at the VM
address 0xffffff8000200000. If we inspect this memory location on a
booted Mac OS X system using GDB we can see that the value at this
address is the magic number that corresponds to a 64-bit Mach-O binary:
gdb$ x/x 0xffffff8000200000
0xffffff8000200000: 0xfeedfacf

EFI uses a flat, 32-bit memory model, rather than the 64-bit memory model
with canonical upper and lower halves that the OS kernel uses, so in the EFI
environment the kernel image is located at 0x00200000.
Since the kernel is not executing at this point and we do not have the facility to
allocate memory in the kernel’s memory map, we need a location in the kernel
image in which we can store our payload. In the proof-of-concept rootkit
implemented by the author, the age-old technique of storing a payload in the
page-alignment padding between binary segments[5] is used.
The simplest proof-of-concept implemented to demonstrate patching the
kernel from EFI is a basic syscall-hooking technique, as follows:

1. Inject a binary payload into the page-alignment padding
2. Locate the sysent table within the kernel image
3. Overwrite the address in the sysent table of the kill() syscall with the

address of the payload
The payload is called when the kill() syscall is called by the kernel, and
performs the following operations:

1. Call the original kill() implementation
2. Check the parameters for a trigger value
3. If the trigger value is present, promote the calling process to uid 0

Below is an example of a driver patching the kernel at boot time to deliver this
type of payload:

Proof-of-concept rootkit “Defile” patching the kernel at boot.

The main limitation of this approach is the limited space in which we can store
a payload. Mach-O binary segments are aligned on page boundaries, and
pages are 4096 bytes in size. This means we have an absolute maximum of
4KB in which to store our payload, but in practice we have less due to the
actual kernel code encroaching on our buffer space. There are various
payload storage options available to the malware developer to solve this
problem; however, the author chose to store the payload in the system’s
NVRAM in the proof-of-concept implementation. We could also store the
second stage payload in Runtime Services memory, or load it over a network
connection.
Prior to patching the kernel, the EFI driver stores the second-stage payload in
NVRAM using the SetVariable() Boot Services function. In order to access
the second-stage payload in NVRAM, a small first-stage payload is injected
into the page-alignment padding as discussed above. In the proof-of-concept
implementation, the author chose to “hook” the execution of the kernel early in
its initialisation stages in order to load the second stage payload from NVRAM
before the user or the kernel has much opportunity to detect and/or interfere
with the payload. This was achieved by overwriting the first instructions of the
load_init_program() function in the XNU kernel with a jump to the first-

stage payload located in the page-alignment padding. The first-stage payload
performs the following operations:

1. Save the state of the CPU
2. Locate the NVRAM device via IOKit
3. Locate the second-stage payload within NVRAM
4. Call the second-stage payload initialisation
5. Restore the patched instructions at the beginning of

load_init_program()
6. Restore the state of the CPU
7. Jump back to the patched function, load_init_program()

In the proof-of-concept implementation, the second-stage payload’s
initialisation process performs the following tasks:

1. Allocate some memory in the kernel memory map
2. Copy the hooked kill() syscall payload used previously to this

memory
3. Locate the sysent table
4. Overwrite the kill()syscall in the sysent table with a pointer to our

function
This may seem like a convoluted design to deploy such a simple payload like
a hooked syscall, but it demonstrates the possibilities that could be
implemented for a larger, more complex rootkit payload.

Persistence & loading drivers
There are a number of locations in which EFI-based malware can be stored in
order to persist on a system – the primary boot device (ie. HDD or SSD),
expansion ROMs on PCI devices, and the EEPROM containing the EFI
firmware itself.

Boot device
The obvious place for malware to persist is the system's boot device. EFI-
based malware, unlike malware targeting the OS kernel or applications, has
fairly limited options for infecting the Mac OS X boot device. The EFI
specification defines a partition at the beginning of the partition table called
the EFI System Partition (ESP). This partition is to be used to store drivers
and bootloaders for various platforms and operating systems. Unfortunately
for the malware developer, Apple’s implementation does not use this partition
for its intended purpose. Instead, the ESP is used to stage firmware updates
(see below).
The most useful option for infecting the boot device with EFI-based malware
is patching or replacing the Mac OS X bootloader – boot.efi. In much the
same way that a replacement bootloader, such as rEFIt[6] is installed, a

malicious bootloader can be installed onto the drive and assigned as the live
bootloader using the bless utility (or a replication of its functionality). This
method has been discussed previously[7] and was not explored extensively in
this research.
Furthermore, simple “evil maid” attacks can be carried out on systems not
protected by an EFI firmware password by using the BDS phase’s boot menu
(holding down the Option key at boot) to boot from an external USB mass
storage device (such as a USB flash disk), FireWire disk, or network boot
source.

PCI expansion ROMs
Attacks utilising PCI expansion (or "option") ROMs have been considered for
some time now. John Heasman discussed the possibilities for option ROM-
based attacks in his 2007 paper, Implementing and Detecting a PCI Rootkit
[8], and it is the author's opinion that the threat has not diminished since then.
Modern Macs use a PCI Express (PCIe) bus to connect on-board peripherals
such as the graphics card to the system. PCIe is also used to connect
external peripherals to the system via the Thunderbolt expansion port. When
the EFI firmware initialises the PCIe bus in the early stages of platform
initialisation, it enumerates devices on the PCIe bus and executes drivers it
finds in expansion ROMs connected to these devices. This operation is
performed as a part of the normal initialisation of the system, as the firmware
contained in the primary EFI flash chip on the logic board may not necessarily
contain appropriate drivers to interact with all connected devices in the pre-
boot environment. For example, when booting from a SATA adapter
connected to the PCIe bus, the firmware needs to be able to interact with the
SATA controller in order to read disks connected to this adapter.
In the same way that they are used to store legitimate drivers to support
hardware, expansion ROMs can be used to store malicious EFI drivers.
Addendums to the EFI specification provide details on how PCI option ROM
images are to be structured in order to contain EFI DXE drivers. It is also
possible for an option ROM image to contain both an EFI driver and a
traditional BIOS driver – allowing for cross-platform payloads that can be used
to attack legacy BIOS and EFI systems alike.
A number of current Mac systems utilise on-board PCIe devices that contain
option ROMs. For example, some MacBook Pro systems contain an
expansion ROM on the higher-performance video card. The video cards used
in iMacs also contain expansion ROMs, as do some Ethernet chipsets used in
various models of Macs. These are all very stealthy locations for malware to
be stored, where it is unlikely to be detected.
Expansion ROMs can be written to from Mac OS X using a kernel-space
driver, like DirectHW.kext[9]. The flashrom[10] utility communicates with
various chipsets using the DirectHW driver to read and write the attached
EEPROM or flash chips via the SPI protocol. Many vendors, for example
Broadcom and ATI, also provide utilities for flashing the expansion ROMs on
their devices.

Expansion ROMs on external devices
As described previously, PCIe devices are enumerated during the early
stages of EFI initialisation, and any drivers discovered are loaded and
executed. This applies to on-board devices and devices connected via PCIe
bus expansions such as ExpressCard and Thunderbolt.
The author has implemented proof-of-concept “evil maid” attacks utilising the
recently-released Apple Thunderbolt to Gigabit Ethernet Adapter and an
ExpressCard SATA adapter as payload delivery mechanisms. To prepare the
delivery mechanism for such an attack, we need to generate an option ROM
image from our malicious EFI driver. This can be achieved using the EfiRom
utility, which is part of the BaseTools package in EDK2. The chipset in
question is a Broadcom BCM57762, the PCI vendor ID for which is 0x14E4,
and the device ID is 0x1682, but the Broadcom utility seems to want 0x0001
as the PCI vendor ID and 0x8003 is the PCI device ID, so that’s what we’ll
use:
$ EfiRom -f 0x0001 -i 0x8003 -e defile.efi -o defile.rom

We can also use the EfiRom utility to inspect the ROM image we’ve created:
$ EfiRom -d defile.rom
Image 1 -- Offset 0x0
 ROM header contents
 Signature 0xAA55
 PCIR offset 0x001C
 Signature PCIR
 Vendor ID 0x0001
 Device ID 0x8003
 Length 0x001C
 Revision 0x0003
 DeviceListOffset 0x00
 Class Code 0x000000
 Image size 0x4E00
 Code revision: 0x0000
 MaxRuntimeImageLength 0x00
 ConfigUtilityCodeHeaderOffset 0x00
 DMTFCLPEntryPointOffset 0x00
 Indicator 0x80 (last image)
 Code type 0x03 (EFI image)
 EFI ROM header contents
 EFI Signature 0x0EF1
 Compression Type 0x0000 (not compressed)
 Machine type 0x8664 (unknown)
 Subsystem 0x000B (EFI boot service driver)
 EFI image offset 0x0038 (@0x38)

Once we have the malicious driver in an option ROM image we can boot into
a FreeDOS system with the adapter connected and use the Broadcom
B57UDIAG.EXE utility to flash it to the expansion ROM on the Thunderbolt to
Gigabit Ethernet Adapter as its PXE firmware:
C:\B57UDIAG\> b57udiag.exe –ppxe defile.rom

Once the option ROM image has been written, we can boot the machine into
Mac OS X with the adapter connected and the device driver will be loaded at

boot time, and the kernel patched at the ExitBootServices() callback as
previously described.
Initially this attack was developed using an ExpressCard SATA adapter
connected to the Mac via an ExpressCard to Thunderbolt adapter, pictured
below.

The first incarnation of the “evil maid” attack apparatus.

This attack was then adapted to utilise the Apple Thunderbolt to Gigabit
Ethernet Adapter, resulting in a much stealthier payload delivery mechanism.

The second incarnation of the “evil maid” attack – pretty stealthy.

The output of lspci shows the presence of an expansion ROM on the adapter:
08:00.0 Ethernet controller: Broadcom Corporation Device 1682
 Subsystem: Apple Computer Inc. Device 00f6
 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop-
ParErr- Stepping- SERR- FastB2B- DisINTx-
 Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort-
<TAbort- <MAbort- >SERR- <PERR- INTx-
 Latency: 0, Cache Line Size: 128 bytes
 Interrupt: pin A routed to IRQ 11
 Region 0: Memory at acb00000 (64-bit, prefetchable) [size=64K]
 Region 2: Memory at acb10000 (64-bit, prefetchable) [size=64K]
 Expansion ROM at acb20000 [disabled] [size=64K]
 --snip--

EFI firmware flash
The ultimate goal for this type of malware is to persist within the EFI firmware
itself. If this is done successfully, as it has been done in the past on some PC
motherboards[11], the attacker can modify everything within the firmware
volume – the core phases of EFI and all other executables contained within
the firmware image.

Exploring firmware volumes
The firmware image format used on Apple Mac systems is the same format
specified by Intel’s documentation[12][13][14].
While investigating the EFI firmware volume format, the author developed a
tool in Python to disassemble firmware volumes. This tool has not been
released; however, other tools have been released for doing similar
disassembly. Example output from this tool showing some of the EFI drivers
contained within the MacBook’s firmware image:
[Firmware Volume]
 Offset 0x0 (0)
 FileSystemGuid 7a9354d9-0468-444a-81ce-0bf617d890df
 FvLength 0x190000 (1638400)
 Signature '_FVH'
 Attributes 0xffff8eff (4294938367)
 HeaderLength 0x48 (72)
 Checksum 0xdefd (57085)
 Revision 0x1 (1)
 [FvBlockMap]
 NumBlocks 25, BlockLength 65536
Files:
 11527125-78b2-4d3e-a0df-41e75c221f5a (EFI_FV_FILETYPE_PEIM)
 4d37da42-3a0c-4eda-b9eb-bc0e1db4713b (EFI_FV_FILETYPE_PEIM)
 35b898ca-b6a9-49ce-8c72-904735cc49b7 (EFI_FV_FILETYPE_DXE_CORE)
 c3e36d09-8294-4b97-a857-d5288fe33e28 (EFI_FV_FILETYPE_FREEFORM)
 bae7599f-3c6b-43b7-bdf0-9ce07aa91aa6 (EFI_FV_FILETYPE_DRIVER)
 b601f8c4-43b7-4784-95b1-f4226cb40cee (EFI_FV_FILETYPE_DRIVER)
 51c9f40c-5243-4473-b265-b3c8ffaff9fa (EFI_FV_FILETYPE_DRIVER)
 53bcc14f-c24f-434c-b294-8ed2d4cc1860 (EFI_FV_FILETYPE_DRIVER)
 ca515306-00ce-4032-874e-11b755ff6866 (EFI_FV_FILETYPE_DRIVER)
 9f455d3b-2b8a-4c06-960b-a71b9714b9cd (EFI_FV_FILETYPE_DRIVER)
 a62d933a-9293-4d9f-9a16-ce81994cc4f2 (EFI_FV_FILETYPE_DRIVER)
 1c6b2faf-d8bd-44d1-a91e-7321b4c2f3d1 (EFI_FV_FILETYPE_DRIVER)
 f1efb523-3d59-4888-bb71-eaa5a96628fa (EFI_FV_FILETYPE_DRIVER)
 a6f691ac-31c8-4444-854c-e2c1a6950f92 (EFI_FV_FILETYPE_DRIVER)
 07a9330a-f347-11d4-9a49-0090273fc14d (EFI_FV_FILETYPE_DRIVER)
 e424c009-cd92-4fec-8029-d79d3f1cf3de (EFI_FV_FILETYPE_DRIVER)
 79ca4208-bba1-4a9a-8456-e1e66a81484e (EFI_FV_FILETYPE_DRIVER)
 45424d0c-e6af-4af2-ad99-fa77168742d1 (EFI_FV_FILETYPE_DRIVER)
 378d7b65-8da9-4773-b6e4-a47826a833e1 (EFI_FV_FILETYPE_DRIVER)
 28df6de0-188f-4200-9959-46fefe971362 (EFI_FV_FILETYPE_DRIVER)
 8d460379-bf70-41c9-9a23-1808cdbbe8cd (EFI_FV_FILETYPE_DRIVER)
 6db75c4a-5e6c-4fc8-a234-f5bb27d5c2d5 (EFI_FV_FILETYPE_DRIVER)
 2daaa7f4-3167-4883-8a06-6c14f08515c7 (EFI_FV_FILETYPE_DRIVER)
 1e843ad6-e237-42fc-bda2-de78542e16dd (EFI_FV_FILETYPE_DRIVER)
 4c862fc6-0e54-4e36-8c8f-ff6f3167951f (EFI_FV_FILETYPE_DRIVER)
 cbd2e4d5-7068-4ff5-b462-9822b4ad8d60 (EFI_FV_FILETYPE_DRIVER)
--snip—-

Writing to firmware flash
It is possible to communicate with the flash chip containing the EFI firmware
on many Mac systems, and overwrite the EFI flash image. For example, we
can communicate with the Intel ICH8M chipset on this MacBook with
flashrom, and see the SST 25VF016B flash chip containing the EFI firmware:

flashrom
flashrom v0.9.5-r1504 on Darwin 11.3.0 (x86_64), built with libpci
3.1.7, LLVM Clang 3.1 (tags/Apple/clang-318.0.54), little endian
flashrom is free software, get the source code at
http://www.flashrom.org

Calibrating delay loop... OK.
Mapping low megabyte at 0x00000400, unaligned size 0xffc00.
Mapping low megabyte, 0xffc00 bytes at unaligned 0x00000400.
sh: dmidecode: command not found
dmidecode execution unsuccessful - continuing without DMI info
Found chipset "Intel ICH8M". Enabling flash write... BBAR offset is
unknown on ICH8!
OK.
Found SST flash chip "SST25VF016B" (2048 kB, SPI) at physical
address 0xffe00000.
No operations were specified.

When the author overwrote the firmware flash with a new (valid) firmware
image containing the original firmware and a malicious driver, the machine
ceased to boot. Manual intervention was required to re-flash the original
firmware by using an external flashing tool (a Bus Pirate by Dangerous
Prototypes) to communicate directly with the flash chip via SPI:

Anecdotal evidence has indicated that Mac systems also contain a “boot
ROM”, which is executed before the EFI firmware and verifies the integrity of
the firmware image including its cryptographic signature at the end of the
firmware volume. If the firmware image is not deemed to be valid, the system
generates the “S.O.S.” beep sound (literally “S O S” in Morse code) and
refuses to boot. The author has not explored this any further; however, it may
be a future area of research.

Defense
There are a number of defensive measures that can be taken against this kind
of attack – some by the user, and some by the vendor.

Firmware password
Apple has implemented password-protection on the BDS (Boot Device
Selection) phase of the EFI firmware in order to prevent "evil maid" attacks
where an attacker has gained physical access to a system and can interfere
with the boot process. This mechanism prevents attackers from executing
malicious EFI drivers and applications from devices connected to the USB,
FireWire and network interfaces, but does not protect the user from malicious
drivers loaded from devices connected directly to the PCIe bus via
ExpressCard or Thunderbolt.
Furthermore, there have been a number of examples where the firmware
password protection has been bypassed by techniques involving removing
memory from the system. Newer Mac notebooks do not have removable
memory, so these attacks may not be applicable to them.
Despite the attacks against the EFI firmware password protection, and the
fact that this mechanism does not protect the user from drivers loaded from
PCI devices, it is recommended that users apply this setting to their systems
to mitigate the risk of simple “evil maid” attacks.

Secure Boot
The UEFI 2.3.1 specification defines a process for authenticating executable
images to be executed by the EFI environment, known as “Secure Boot”.
Approved vendors sign their drivers, bootloaders and applications with a
cryptographic key. A database of allowed vendor keys is stored in secure,
non-volatile storage, and these keys are used to verify the signatures within
executables that are to be loaded and executed. Executables that are not
signed by approved vendors are refused execution. A successful
implementation of this process would mitigate the risk of many attacks
described herein.
Previous generations of Mac systems have included a Trusted Platform
Module (TPM) on the logic board, which was, to the knowledge of the author,
unused. In an implementation of Secure Boot by Apple, the TPM would be
used to store and generate cryptographic keys used in the Secure Boot
process.
Attacks against, and the implementation of, Secure Boot have not been
explored thoroughly in this research, however it is suggested that Apple
implement Secure Boot in a future version of their EFI firmware.

Conclusion
This paper has demonstrated that there are a number of ways in which the
EFI firmware used in modern Macs and other systems can be used in attacks

against the operating system and the user. These attacks can be undertaken
against a wide range of hardware and software configurations with a great
deal of ease, compared to similar attacks against the legacy PC BIOS, due to
the standardised and cross-platform nature of the EFI specification and its
supporting technologies.

References
1. Hardware Backdooring is Practical – Jonathan Brossard & Florentin

Demetrescu, Hackito Ergo Sum 2012
http://2012.hackitoergosum.org/blog/wp-content/uploads/2012/04/HES-
2012-jbrossard_fdemetrescu-Hardware-Backdooring-is-pratical.pdf

2. UEFI Specification
http://www.uefi.org/specs/

3. EFI Development Kit II
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

4. Infiltrate the Vault: Security Analysis and Decryption of Lion Full Disk
Encryption
http://eprint.iacr.org/2012/374.pdf

5. Runtime Kernel kmem Patching – Silvio Cesare
http://althing.cs.dartmouth.edu/local/vsc07.html

6. rEFIt
http://refit.sourceforge.net/

7. Hacking the Extensible Firmware Interface – John Heasman, 2007
https://www.blackhat.com/presentations/bh-usa-
07/Heasman/Presentation/bh-usa-07-heasman.pdf

8. Implementing and Detecting a PCI Rootkit – John Heasman, 2007
http://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-dc-
07-Heasman-WP.pdf

9. DirectHW, part of the CoreBoot project
http://www.coreboot.org/DirectHW

10. Flashrom
http://flashrom.org/

11. Attacking the Intel BIOS – Invisible Things Labs, 2009
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIO
S.pdf

12. Intel Platform Innovation Framework for EFI – Firmware Volume
Specification

http://download.intel.com/technology/framework/docs/Fv.pdf
13. Intel Platform Innovation Framework for EFI – Capsule Specification

http://download.intel.com/technology/framework/docs/Capsule.pdf
14. Intel Platform Innovation Framework for EFI – Firmware File System

Specification
http://download.intel.com/technology/framework/docs/Ffs.pdf

About the author
Loukas is the Principal Consultant at Assurance Pty Ltd in Melbourne,
Australia. Assurance is a specialist, vendor-neutral consultancy providing
security and mobility services for critical infrastructure, financial services and
government.

